Doing It the Right Way: Porous Pavement with Underground Recharge Beds

Cahill Associates
Environmental Consultants
West Chester, PA 19382
Cape May, NJ 08204
www.thcahill.com

The Problem
SUSTAINABILITY

Sustain the quality and quantity of our natural resources for use by future generations

Stormwater Management

Only considered during the past thirty years
Land Development
Alters the
Hydrologic Cycle

- Reduces Infiltration
- Increases Direct Runoff
- Increases Pollutants
Surface runoff increases by 36" (3 ft) per year
INCREASED RUNOFF

- ET ADDED (PLANTS) – 21” TO 30”/YR
- INFILTRATION PREVENTED – 6” TO 15” /YR

Groundwater Discharge to Surface Streams

[Diagram of ground and surface water interaction]

[Image of healthy stream]
BASE FLOW
- Accounts for stream flow 11 months/yr.
- Comprises some 60% of total annual flow
NPS POLLUTION

- Overwhelming mass transport during runoff in most watersheds – 25 days/yr
- NPS transport accumulates largely in lacustrine and estuarine systems
- Excessive enrichment is major impact

The Problem: Water Quality

- Phosphorus
- Nitrogen
- Sediment
- Hydrocarbons
- Pathogenic bacteria
- Metals/toxics

NON-POINT SOURCE POLLUTANTS

- Particulate associated – travel with sediment; phosphorus, metals, organic matter, debris (human) and detritus (plant matter)
- Solutes – dissolved in stormwater; nitrates, salts, herbicides and pesticides
Water quality problems
Land Development Impacts on Stream Morphology:

- Channel widening, downcutting, scouring
- Stream bank erosion
- Imbedded stream substrate with benthic impacts
- Loss of pools, riffles
Temperature changes

Effects of Urbanization on Watershed

- Flash Flooding and Streambank Erosion.
- Diminished Flow During Dry Periods.
- Degraded Water Quality.

Flood and drought are opposite sides of the same coin.
STORMWATER MANAGEMENT

- Water Quantity
- Water Quality
- Rate is minor issue

“Sustainable” Stormwater Management means Maintaining the Hydrologic Balance that Existed Before Development

- Infiltrating the Net Increase in Volume of Runoff for the 2-Year Storm Event.
Traditional Stormwater Management

- Control Peak Rate of Runoff after Development to Pre-Development Rate.
- Detention Basins
 - Temporary Storage
 - Sediment Control
- Does Not Address Increase in Volume of Runoff
Sustainable Site Design and Water Resources Management

Specific design methods and materials

INFILTRATION BMPS

- Infiltration Beds Beneath Porous Pavement
- Infiltration Trenches, Drains
- Infiltration Swales w/ Vegetation
- Infiltration Berms (sloped areas)
Porous Bituminous Pavement with Underground Recharge Beds

Porous Pavement with Recharge Bed

River Jacks Open Into Recharge Bed

Pervious Asphalt

Stone Bed w/ 40% Void Space for Storage/Recharge

Porous bituminous pavement

- Developed by the Franklin Institute – 1972
- Tested in pilot projects during 1970’s
- Development of geotextiles in 1979
- Current design since 1980
- CA has built over 150 projects since 1980
- Outstanding engineering project - 2000
Porous Pavement

- Over 30 installations at schools
- Oldest systems 1980-82
- Schools
 - Penn State University – State College & Reading (2)
 - University of Rhode Island – 1,000 cars
 - University of North Carolina (2) 1,500 cars
 - University of Michigan – 2 sites
 - Penn New School in Philadelphia - playground
 - St. Joseph’s School in Downingtown, PA
 - Springside School in Philadelphia

Porous Pavement Commercial installations

- DuPont, Verizon, SmithKline, Siemen’s
- National Park Service, Fish & Wildlife, National Forest Service
- Libraries, Religious Centers, Prisons
- Industrial – Ford and Alcoa
- Office Parks, Shopping Malls, Municipal Buildings
Porous Pavement

- **What is it?**
 - Asphalt in which fine particles are kept to a minimum
- **Why?**
 - This allows rainfall to drain through the pavement rather than running off
- **Where does the rainfall go?**
 - A bed beneath the pavement receives rainfall from the pavement as well as inflow from other areas

Construction of Porous Pavement/Recharge Bed Systems

- Level, uncompacted subgrade
- Geotextile
- Clean, uniformly graded stone aggregate for 40% void space
- Porous bituminous asphalt
- Perimeter drains inlets

Porous or Standard Paving w/ Infiltration

![Diagram showing the layers of a porous pavement system including: Finish Grade, Pervious Paving - Surface Course 2½", Choker Course - AASHTO No. 57-1" or More Sufficient to Fill Large Aggregate Space, Clean, Uniformly Graded Coarse Aggregate, AASHTO No. 2, Non-Woven Geotextile, Bed Top, Elevation, Uncompacted Subgrade.](image)
Porous Asphalt Mix

<table>
<thead>
<tr>
<th>US Standard Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2”</td>
<td>100</td>
</tr>
<tr>
<td>3/8”</td>
<td>95</td>
</tr>
<tr>
<td>#4</td>
<td>35</td>
</tr>
<tr>
<td>#8</td>
<td>15</td>
</tr>
<tr>
<td>#16</td>
<td>10</td>
</tr>
<tr>
<td>#30</td>
<td>2</td>
</tr>
</tbody>
</table>

- 5.75% to 6% Asphalt

Porous AC Pavement

- Fully permeable AC mix – 2.5” application
- Uniformly graded stone base reservoir-30”
- Geotextile on bottom to stop soil
- Flat bottom to allow uniform infiltration

Median Pollutant Removal (%) of Stormwater Treatment Practices

<table>
<thead>
<tr>
<th>POLLUTANT</th>
<th>INFILTRATION PRACTICES</th>
<th>Stormwater Wetlands</th>
<th>Stormwater Ponds</th>
<th>Filtering Practices</th>
<th>Water-Quality Basins</th>
<th>Stormwater Dry Ponds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>70</td>
<td>49</td>
<td>51</td>
<td>59</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>Soluble Phosphorus</td>
<td>85</td>
<td>35</td>
<td>66</td>
<td>3</td>
<td>36</td>
<td>-6</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>51</td>
<td>34</td>
<td>33</td>
<td>28</td>
<td>94</td>
<td>25</td>
</tr>
<tr>
<td>Arsenic</td>
<td>82</td>
<td>67</td>
<td>43</td>
<td>14</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Copper</td>
<td>N/A</td>
<td>40</td>
<td>57</td>
<td>49</td>
<td>51</td>
<td>26</td>
</tr>
<tr>
<td>Zinc</td>
<td>99</td>
<td>44</td>
<td>66</td>
<td>85</td>
<td>71</td>
<td>26</td>
</tr>
<tr>
<td>TSS</td>
<td>86</td>
<td>76</td>
<td>80</td>
<td>86</td>
<td>81</td>
<td>47</td>
</tr>
</tbody>
</table>

Asphalt Pavements
The Evolution

Early Asphalt Pavements
- First record Babylon around 625 B.C
- First asphalt pavements in US late 19th Century

Bitulithic Pavements
- First successful, reproducible asphalt concrete surfaces
- Maximum aggregate size 75 mm graded down to dust
- F.J. Warren patent issued 1903 (Patent No. 757505)

50 mm (typical) Wearing Course Placed in One Lift
(Gravel aggregate 50 to 80% between the ¼” and 3”)

Various Types of Base and Old Pavements
Composite Bitulithic Pavement

Rich Sand Asphalt Mix
50 mm Binder Course (Asphalt Cement and Broken Stone)
100+ mm Base (Often PCC or other Base Materials)

Dense graded
- Coarse & Fine
Open Graded (Porous)
- OGFC – used as surface course
- ATPB – used as drainage layer below pavement
Stone Matrix Asphalt (SMA)

Open-Graded Mixes

OGFC - normally used for surface to:
- Reduce splash and spray
- Improve skid resistance
- Reduce hydroplaning
- Noise reduction
ATPB – used below pavement surface to:
- Drain water below pavement to reduce chance of saturating unbound materials
OGFC

- Beginnings 1944 in California as Plant Mix Seal
- 1970's FHWA developed OGFC mix
 - AKA – plant mix seal, popcorn mix, asphalt concrete friction course
- Permeable European Mix (PEM)
 - Using polymers and fibers to increase asphalt content for durability

OGFC on Freeway

Water Normally Viewed as the Enemy of Pavements

- Engineers taught to keep water out.
 - Soils become weaker when saturated
- Compact soils to increase strength
 - Also reduces permeability
- Seal cracks and joints to keep water out
- Install subdrains to drain moisture away from subgrade
Changing Views

- Engineers need to know when and where porous pavements can be used.
- Pavement structure will be thicker for porous pavements
 - Structural requirements
 - Water storage requirements
 - Frost depth

Structural Design

- Needs to be evaluated
- Probably won’t control total thickness
- Use standard design procedures such as AASHTO, Asphalt Institute or DOT.

Structural Design Inputs
Example - Arizona

<table>
<thead>
<tr>
<th>Layer</th>
<th>SN</th>
<th>Thick (in)</th>
<th>Layer</th>
<th>SN</th>
<th>Thick (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGFC</td>
<td>0.40</td>
<td>6</td>
<td>AC</td>
<td>0.44</td>
<td>8</td>
</tr>
<tr>
<td>ATB</td>
<td>0.20</td>
<td>6</td>
<td>AB</td>
<td>0.14</td>
<td>7</td>
</tr>
<tr>
<td>Subbase</td>
<td>0.11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.48</td>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
</tbody>
</table>
Structural Design
Min Thicknesses

- Open Graded HMA – 2"
- Reservoir course – 9"

Evolution of Asphalt Binders

- Pitch Lake—La Brea, Trinidad
 Discovered by Sir Walter Raleigh in 1595 (or 409 years ago)
 First use on streets in 1815 in Port of Spain, Trinidad and Tobago.
Asphalt Binders

- Asphalt refined from crude oil
 - California 1893
 - Texas 1902
- Now dominant source of asphalt binder
- Some TLA used still for special applications

Early Specifications

- Lake Asphalts
- Appearance
- Solubility in carbon disulfide
- Petroleum asphalts (early 1900’s)
- Consistency
 - Chewing
 - Penetration machine
- Measure consistency

Penetration Testing

- Sewing machine needle
- Specified load, time, temperature

100 g Penetration in 0.1 mm

Initial After 5 seconds
Penetration Specification

- Five Grades
 - 40 - 50
 - 60 - 70
 - 85 - 100
 - 120 - 150
 - 200 - 300

Temperature

Penetration, 0.1 mm

Advantages

- Grades asphalt near average in-service temp.
- Fast
- Can be used in field labs
- Low capital costs
- Precision well established
- Temp. susceptibility can be determined
Disadvantages

- Empirical test
- Shear rate
 - High
 - Variable
- Mixing and compaction temp. information not available
- Similar penetrations at 25°C (77°F) do not reflect wide differences in asphalts

Viscosity Graded Asphalts

- Fundamental property
- Wide range of temperatures
- Based on max. pavement surface temp.
- Test method precision established
- Temperature susceptibility is controlled
- Limits aging
- Information on mixing & compaction temps.

Disadvantages (Viscosity Grading)

- More expensive
- Longer testing time
- More technician skill needed
- Not applicable for Non-Newtonian materials
- Wide range of properties for same grade
New Binder Specification
Superpave – Performance Graded (PG)

- Fundamental properties related to pavement performance
- Environmental factors
- In-service & construction temperatures
- Short and long term aging

Superpave Asphalt Binder Specification
Grading System Based on Climate

PG 58-22

- Performance Grade
- Average 7-day max pavement design temp
- Min pavement design temp

Construction
Rutting
Fatigue Cracking
Low Temp Cracking

Pavement Age
No aging
RTFO - aging
PAV - aging

PG Binders

- Now used in most state
- Most states have developed three grades that are used in state.
 - Standard grade i.e. PG 64-22
 - One grade bump i.e. PG 70-22
 - Two grade bump i.e. PG 76-22
- Southeastern states standard grade PG 67-22
 - Similar to old AC 30 grade
- California uses AR and PB grades

Which binder is right for Porous Asphalt Pavements?

- Recommend one or two grade bumps from standard grade
- Example:
 - Standard Grade PG 64-22
 - One grade bump PG 70-22
 - Two grade bump PG 76-22

Polymer Modifiers

- Reasons for use of polymer modifiers
 - Increased demand on HMA pavements (ESALs)
 - Superpave specifications may require a wider range of binder performance.
 - Disposal of waste products
 - Tires, plastic, etc.
 - Willingness to pay more up front for long term benefit
 - Reduce draindown
Polymer Modifiers

- Types of Polymer Modifiers
 - Elastomers
 - Offer stiffness, but also flexibility
 - SBS, SBR, SB, Crumb Rubber, etc.
 - Plastomers
 - Offer high stiffness, but have reduced flexibility
 - LDPE, EVA, Polyolefins, etc.

“Possible” improvements offered by polymer modifiers
- Stiffer mixes at high temperatures
- Softer mixes at low temperature
- Improved fatigue resistance
- Reduced life cycle costs

Is a PG a Modified Binder?

“Rule of 90 or 92”

PG 64 - 34 > 64 - 34 = 98

Probably modified !!

(Depends on Asphalt Source!)
Diagram of infiltration bed at Morris Arboretum
DuPont Barley Mills Office Complex

- Preserve Woodlands
- Porous Pavement w/ Groundwater Recharge
- Reduce Site Disturbance
Ford Rouge Center 1952

Artist Richard Rochon’s rendering of an aerial view of the Ford Rouge Center that includes the new Ford assembly plant.

Strategy for Water Quality

40” - 48” TO WATER TABLE

SLAG RETENTION BED

ROOF LEADERS SHOULD BE EXTENDED INTO THE RETENTION BED WHERE POSSIBLE
Vegetated Swale Pollutant Removal Efficiency

Benefits of Porous Pavement

- **Economic**
 - Reduces/Eliminates the land space consumed by conventional detention facilities
 - Reduces the need for curbs, gutters, inlets, and storm sewers
 - Helps prevent excessive flooding

- **Aesthetic**
 - Eliminates the need for unsightly detention basins, rip-rap channels, etc.
 - Preserves areas such as woods or open space that would have been destroyed for detention basins
 - Eliminates puddling and flooding on parking lots
Environmental Benefits of Porous Pavement

- Reduces the amount of impervious surface on a site
- Reduces the discharge of pollutants and improves water quality
- Storage Bed limits the peak discharge and reduces stress on existing conventional sewers

NPS Pollutant Removal Efficiency (% EPA 1993)

<table>
<thead>
<tr>
<th></th>
<th>TP</th>
<th>TN</th>
<th>Pb</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infiltration Swale</td>
<td>65</td>
<td>60</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Grass Swale</td>
<td>20</td>
<td>10</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Porous Pavement</td>
<td>65</td>
<td>85</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ex Det. Pond</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Wet Pond</td>
<td>45</td>
<td>35</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Wetlands</td>
<td>25</td>
<td>20</td>
<td>65</td>
<td>35</td>
</tr>
</tbody>
</table>

Ford Rouge Center
Industrial Stormwater Quality Management

- Use native species and limit future chemical site maintenance.
- Limit artificial areas such as maintained lawns.
- Avoid discharges of wastewater to streams & lakes.
- Avoid excessive earthwork which creates erosion & sediment problems.
- Maintain native vegetation.
- Use low maintenance, water quality BMPs.

Commercial: Walmart Aurora

- Porous Parking
 - Asphalt
 - Concrete
- Recycled Rubber Walkways
- Bioswales
- Native Prairie Restoration
- Use of Recycled Materials
 - Fly Ash, Concrete, Recycled Asphalt
First use of RAP in Porous Asphalt - 5% & 10%

Bioswales (just planted)
San Diego County Porous Pavement Demonstration

- Porous Asphalt, Porous Concrete, Pavers
- Existing paved site – 50 years old
- Soil mantle disturbed, cut 3 feet, compacted
- Water quality and quantity monitored
West Hollywood Site Considerations

- Average seasonal rainfall = 14.5"
- Urban setting
- Retrofit
- CALTRANS specification w/CA mod.
West Hollywood – Pervious Asphalt

Kaiser-Permanente Hospital
- 50-acre parcel on the outskirts of Modesto, CA
- 10 acres of porous AC pavement built
- Total recharge of annual rainfall for the site
University of Rhode Island

750 space parking lot
Designed with BETA Engineers
Penn New School
Philadelphia K-8

- Soccer Field underlain by Infiltration Bed
- Porous Asphalt Playfield
- Rain Gardens fed by Roof Leaders
- Urban setting – 43rd and Locust
LOS ANGELES, CA

VERY ARID CLIMATE

ANNUAL RAINFALL

- 15" PER YEAR
- 4" DIRECT RUNOFF FROM NATURAL
- 7" ET
- 4" RECHARGE
West Hollywood Site Considerations

- Average seasonal rainfall = 14.5”
- Urban setting
- Retrofit
- CALTRANS specification w/CA mod.
Surface runoff increases by 11” (0.92 ft) per year

298,000 GALLONS/ACRE

INCREASED RUNOFF

- ET ADDED (PLANTS) – 7”/YR
- INFILTRATION PREVENTED – 4”/YR
General Rules for Soils Testing for Infiltration BMPs

Purpose of Infiltration Testing

- Determine Suitability for Infiltration BMPs
- Determine Rate of Infiltration
- Design appropriate BMP
- Using Soil for Stormwater Management

How Does Water Move through Soil?

Soil is composed of solid particles of different sizes (minerals and organic matter) often "glued" together into tiny aggregates by organic matter, mineral oxides and charged clay particles. The gaps between the particles link together into a meandering network of pores of various sizes. Through this pore space the soil exchanges water and air with the environment. The movement of air and water also allows for heat and nutrients to flow.

Saskatchewan Centre for Soil Research
Soil Macropores
> 0.1 mm in diameter

Formation of Soil Macropores
- Root Systems (living and decaying)
- Water Movement
- Large and small organisms
- Freeze-thaw cycle
- Soil shrinkage (dessication of clays)
- Weathering processes
Characteristics of Soil Macropores

- Provide primary mechanism for air and water movement
- Decrease with depth
- Destroyed by compaction, soil disturbance, loss of organic material
- Convey water under saturated conditions

The conductivity of soil macropores (pores > 0.1 mm in diameter) can be as much as ten times the conductivity of the soil matrix.

Soil Tests

- Lab tests to determine hydraulic conductivity based on grain size, shape, and porosity based on a homogeneous sample will not represent field conditions.
- Darcy’s Law may not represent movement through macropores.
- Tests need to be conducted in the field.

Engineering analysis of soils

- Analyzed soil as a structural material
- Bearing capacity, consolidation, etc.
- Little understanding of biological and chemical processes
- Compaction of soil considered essential
Wastewater analysis of soils

- Design of a stone/sand bed that allows both aerobic decomposition and infiltration
- Shallow bed to provide oxygen transfer
- Daily loading of wastewater

Deep Hole and Percolation Tests

Soil Testing

Recommended Approach

Desktop Evaluation
- Site Conditions
- Potential BMP locations
- Deep Hole observation
- Multiple Testing Locations
- Infiltration Tests
 - Percolation tests
 - Infiltrometer
- Design Considerations
 - Safety factor

Desktop Evaluation

- Underlying Geology
- Soils
- Hydrologic Soil Group
- Topography and Drainage Patterns
- Streams, Wetlands, Wells,
- Land Use
 - Currently in Ag?
 - History of fill/disturbance?
Know Your Soils

- Select the right locations for Testing
 - Low, Wet areas will not drain
- Multiple Testing Locations
- Importance of Deep Hole for Visual Inspection
- Evaluate Soils – Percolation Tests
 - Test near bottom of proposed bed
Deep Hole Observations

- Soil Horizons
- Soil Texture and Color
- Pores, Roots
- Type and Percent Coarse Fragments
- Depth to Water Table
- Depth to Bedrock
- Hardpan or Limiting Layers

Number and Location of Deep Hole Tests

- Single family - 1 test at BMP location
- Larger Systems- 4 to 6 tests per acre
- Additional Tests based on changes in variability in soils, topography, geology, land use, etc.

Better to do many test holes

Test Multiple Locations
Visual Inspection Important!
Hardpan Layer

Depth of Hardpan Varies
Deep Hole Observation Affects Design

- Depth of Hardpan Varies
- Layer is Shallow –
 - Excavate
 - Place Beds Beneath
- Hardpan is Deep
 - Place Bed Bottom 2’ above Hardpan
 - “Punch Through” with Borings

Testing Previously Disturbed Areas

- Historic fill
- Surface compaction
- Deep Hole Observation even more important
Urban Retrofit – Villanova Plaza

Safety Issues
How Well Does the Site Infiltrate?

• Percolation Test
• Double Ring Infiltrometer
 - ASTM D 3385-03
 - ASTM D 5093-90
• Hydraulic Conductivity - Lab Test
• Amoozemeter
• Constant Head

Limits of Budget and Time

Not an Exact Science!
Number and Location of Infiltration Tests

- Minimum 2 per Deep Hole
- At least one test at bed bottom
- Test different horizons
- Methodology: Pa Code Chapter 73

Percolation Tests

- 6" to 10" diameter
- 12" depth
- Scarify sides and bottom
- Minimum of 8 readings or stabilized rate for 4 consecutive readings
Recommendation

- Supplement Perc Tests with Infiltrometer Tests
- Compare variations
- 10% of tests with infiltrometer
Recommended Approach

• Desktop Evaluation
• Deep Hole observation
• Infiltration Tests
• Design Considerations
 – Observed Infiltration Rate for Site Suitability
 – Safety Factor for Design: 2

What Not to Do

• Test the Wettest Areas
• Do only 1 or 2 tests for a large area
• Try to Perc Bore Holes (30’ Deep)
• Excessive Grading and disturbance
• Claim that the Site Does Not Infiltrate
Limestone Considerations

• Geotechnical Investigation
 - Depth to rock
 - Pinnacles
 - Sinkhole potential

• Design Considerations
 - Spread It Out! 3:1
 - Avoid concentrating/conveying/deep excavation

Areas of Carbonate Lithology
Geotechnical and Soils Testing

- **Shallow Borings**
 - 15 feet deep
 - 25 feet OC
 - Test Infiltration Areas

- **Soils Tests**
 - Deep Holes
 - Perc Tests

1150'

1145'

1140'

1135'

1130'

1125'

0+00 0+30 0+60 0+90 1+20 1+50 1+80 2+00

Porous Pavement

Stormwater Beds

Rock 1133

Rock 1133.5

Rock 1136.5

Rock 1140.5

Rock 1141.5

Porous Pavement

Stormwater Beds

Rock 1130

Rock 1138

Rock 1140.5
Construction Criteria

• Protect soils - Do not compact!
• Protect infiltration BMPs from sediment until drainage area is completely stabilized
• Sequencing
• Staging/stockpiling
• Use clean aggregate
• Establish/protect dense vegetation

Protect Integrity of Soils

Options
1. “Septic System” Approach? Fence off?
2. Build and Protect?
3. Construct at end of Job
 • Use as Temporary E & S
 • Final Grading at end of Job
 • Site is stabilized

Common Bulk Density Measurements

<table>
<thead>
<tr>
<th>Undisturbed Lands</th>
<th>Residential Neighborhoods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forests & Woodlands</td>
<td>1.03g/cc</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Golf Courses - Parks Athletic Fields</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.69 to 1.97g/cc</td>
<td>2.2g/cc</td>
</tr>
</tbody>
</table>

David B. Friedman, District Director Ocean County Soil Conservation District
Designing Infiltration Systems

Site Criteria

- Soil Permeability greater than 0.25 in./hr
- Minimum Bedrock Separation of 2 feet
- Infiltration device at least 3 feet above seasonally high water table
Design Criteria

• Spread It Out!
• 5:1 Impervious to Recharge Area
• Minimize excavation / maximize soil buffer
• Pre-treatment for “hot-spots”
• Construction oversight!!
• Level Bed Bottoms
• Keep it Clean – E&S Control

Construction Criteria

• Protect infiltration BMPs from sediment until drainage area is completely stabilized
• Do not compact soil under infiltration areas
• Protect infiltration BMPs from sediment
• Do not compact soil

Level Infiltration Beds with Sloping Surface
Hydrologic Calculations

• Net increase in Volume for 2-year storm
• Mitigate Peak Rate for larger storms
Effect of Detention: Peak Rate may be Controlled but Volume Increase is Not Mitigated

“Lost” Infiltration as Curve Number Increases

SCS Type II Rainfall Distribution for the 2 and 100-yr, 24-hr Storms in the Northern Piedmont Region
Rainfall Inflow to Recharge Bed over 24-hour Period

Cumulative Inflow and Bed Infiltration – 2 yr Storm w/ Moderate to Poorly Drained Soils

Cumulative Inflow and Bed Infiltration – 100 yr Storm w/ Moderate to Poorly Drained Soils
Storage Depth in the Stone Bed Assuming a 40% Void Space – Well Drained Soils

Comparison of Detention vs. Infiltration Design Systems

POROUS AC PAVEMENT IN PORTLAND
PORT OF PORTLAND
PIER 6
AUTO STORAGE YARD
Existing pavement is both impervious AC and gravel

Goal is to apply pervious AC pavement in gravel areas

40 acre tract
Soil is dredge material from river bed – sandy soil

Original sub-soil is sediment deposits of ancient flood plain
Columbia River Valley

Gravel surface varies
4” to 8” periodically regraded

Significant surface puddles
Distributed over tract
Porous pavement design begins by understanding and measuring the sub-surface soil conditions.

Porous pavement is the icing on the cake of a stormwater infiltration system.
Modeling Infiltration
BMPs

CAHILL ASSOCIATES
Environmental Consultants
West Chester, PA
(610) 696 - 4150
www.thcahill.com

Design Goals for Calculations

1. Mitigate Peak Rates 2-Year to 100-Year
2. No Volume Increase for 2-Year Event
3. Maintain Groundwater Infiltration

Provide Calculations for Municipal Approval

Dry Channels...

Erosed Streambanks...
Bankfull Flow Forms and Maintains Channel

- Recurrence Interval 1.5 Years
- Higher Flows Exceed Channel Capacity
- More Frequent Bankfull more important than large floods in shaping channel.

The Channel is shaped by the Bankfull Flow

Three (Real Life) Case Studies

1. Institutional LID – Penn State Visitor Center
2. Commercial – Small Retail Shopping Center
3. Residential – High Density Townhouse, Quad, and Singles
Proposed Development 1: Penn State Visitor Center

- 4.5 Acre Site
- 1.4 acres Impervious (31%)
 - 15,500 Square Foot Building
 - 2,100 Square Feet Paths
 - 44,250 Square Feet Parking, Roads

28% for People, 72% for Cars!

Penn State Case Study

- Existing (CN = 74):
 - 4.55-acre meadow on HSG “C” soils
 - SCS Lag Time of 18 minutes
- Proposed (CN = 81):
 - Commercial Site
 - 1.1-acres pavement & building
 - 3.1-acres lawn
 - 0.32-acres porous parking (CN 98 used for calcs)
 - SCS Lag Time of 12 minutes

Note: No “adjustment” in CN or Lag for LID design!
2-Year Volume Increase

<table>
<thead>
<tr>
<th>Design Storm</th>
<th>Rainfall</th>
<th>Existing Runoff*</th>
<th>Future Runoff</th>
<th>Net Increase in Runoff Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(in)</td>
<td>(ft³)**</td>
</tr>
<tr>
<td>1-Year</td>
<td>2.2</td>
<td>0.45</td>
<td>0.73</td>
<td>0.29</td>
</tr>
<tr>
<td>2-Year</td>
<td>2.6</td>
<td>0.67</td>
<td>1.01</td>
<td>0.35</td>
</tr>
<tr>
<td>5-Year</td>
<td>3.1</td>
<td>0.97</td>
<td>1.39</td>
<td>0.35</td>
</tr>
<tr>
<td>10-Year</td>
<td>3.6</td>
<td>1.31</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>25-Year</td>
<td>4.2</td>
<td>1.74</td>
<td>2.29</td>
<td>0.55</td>
</tr>
<tr>
<td>50-Year</td>
<td>4.7</td>
<td>2.13</td>
<td>2.72</td>
<td>0.59</td>
</tr>
<tr>
<td>100-Year</td>
<td>5.3</td>
<td>2.61</td>
<td>3.25</td>
<td>0.65</td>
</tr>
</tbody>
</table>

*Based on Q=(P-0.2S)²/(P+0.8S)
S=100/CN-10
**Based on 4.55 acres

Storage Available

<table>
<thead>
<tr>
<th>Volume of Stone Below Invert</th>
<th>Storage Volume *</th>
<th>Bottom Area (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ft³)</td>
<td>(ft³)</td>
<td>(ft²)</td>
</tr>
<tr>
<td>Upper Parking Bay</td>
<td>4,955</td>
<td>1,982</td>
</tr>
<tr>
<td>Lower Parking Bay</td>
<td>11,374</td>
<td>4,550</td>
</tr>
<tr>
<td>Bioretention</td>
<td>0</td>
<td>1500</td>
</tr>
<tr>
<td>Infiltration Trench</td>
<td>1,420</td>
<td>0</td>
</tr>
<tr>
<td>Porous Sidewalk</td>
<td>0</td>
<td>1,500</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>17,749</td>
<td>6,532</td>
</tr>
</tbody>
</table>

* Based on 40% void space in stone bed

Design “Rules of Thumb”

- Retain 2-Year Net Increase in Volume
 - Net Increase: 5,765 CF
 - Available Storage before Overflow: 6,532 CF
- Infiltrate at a Maximum 5:1 Ratio
 Impervious:Infiltration Area
 - Impervious Area: 61,000 SF
 - Infiltration Area: 12,425 SF
 Ratio 5:1
For the purposes of routing, the two storage/infiltration beds beneath the Porous Parking have been combined into one basin. The storage of the infiltration trench is not included.

Infiltration discharge is calculated assuming a conservative soil infiltration rate of 2 inches per hour over the entire bed bottom. Measured infiltration is in excess of 12 in/hr.

Infiltration rate: $Q = \text{Bottom Area} \times 2\text{ in/hr}$

Volume into beds: $V_{\text{in}} = Q \times t$

Volume infiltrated: $V_{\text{inf}} = Q \times t$

Volume in storage: $V_{\text{st}} = Q \times t$

<table>
<thead>
<tr>
<th>Time</th>
<th>Q After (Uncontrolled)</th>
<th>Infiltration Rate</th>
<th>Volume into Beds</th>
<th>Volume Infiltrated</th>
<th>Total Storage Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>(cfs)</td>
<td>(cfs)</td>
<td>CF</td>
<td>CF</td>
<td>CF</td>
</tr>
<tr>
<td>11</td>
<td>0.42</td>
<td>0.57</td>
<td>624</td>
<td>616</td>
<td>8.6</td>
</tr>
<tr>
<td>11.3</td>
<td>0.58</td>
<td>0.57</td>
<td>899</td>
<td>616</td>
<td>291.9</td>
</tr>
<tr>
<td>11.6</td>
<td>0.83</td>
<td>0.57</td>
<td>1,174</td>
<td>616</td>
<td>1598.8</td>
</tr>
<tr>
<td>12</td>
<td>3.26</td>
<td>0.57</td>
<td>3,255</td>
<td>205</td>
<td>2567.1</td>
</tr>
<tr>
<td>12.1</td>
<td>6.27</td>
<td>0.57</td>
<td>3,895</td>
<td>205</td>
<td>4617.4</td>
</tr>
<tr>
<td>12.2</td>
<td>10.82</td>
<td>0.57</td>
<td>4,927</td>
<td>205</td>
<td>8307.3</td>
</tr>
<tr>
<td>12.3</td>
<td>13.69</td>
<td>0.57</td>
<td>4,777</td>
<td>205</td>
<td>12410.0</td>
</tr>
<tr>
<td>12.4</td>
<td>13.27</td>
<td>0.57</td>
<td>4,777</td>
<td>205</td>
<td>12410.0</td>
</tr>
<tr>
<td>12.5</td>
<td>9.96</td>
<td>0.57</td>
<td>3,587</td>
<td>205</td>
<td>13192.7</td>
</tr>
<tr>
<td>12.6</td>
<td>6.89</td>
<td>0.57</td>
<td>2,480</td>
<td>205</td>
<td>12868.5</td>
</tr>
<tr>
<td>12.7</td>
<td>4.99</td>
<td>0.57</td>
<td>1,798</td>
<td>205</td>
<td>11861.9</td>
</tr>
<tr>
<td>12.8</td>
<td>3.77</td>
<td>0.57</td>
<td>1,357</td>
<td>205</td>
<td>10414.1</td>
</tr>
</tbody>
</table>
Summary Result
100 Year Peak Rate

• Before \(Q_p = 9.8 \text{ cfs} \)
• After \(Q_p = 13.7 \text{ cfs} \)
• With BMPs \(Q_p = 7.2 \text{ cfs} \)

Proposed Development 2:
Commercial Shopping Center

• 3.0 Acre Site
• 1.5 acres Impervious (50%)
 – 17,000 Square Foot Building
 – 48,340 Square Feet Parking, Roads

 26% for People, 74% for Cars!

Porosity: Porous Asphalt w/ Infiltration (0.40 ac.)
Sidewalk & Pavement Areas (1.11 ac.)
Planted Grass Area (1.0 ac.)
Undisturbed Meadow (0.5 ac.)
Proposed Building Site (0.39 ac.)
Case Study

- Existing (CN = 58):
 - 3.0-acre meadow on HSG “B” soils
 - SCS Lag Time of 12 minutes
- Proposed (CN = 79):
 - Commercial Site
 - 1.5-acres pavement & building
 - 1-acre lawn
 - 0.5-acre undisturbed meadow
 - SCS Lag Time of 6 minutes

Design/Calculation Approach

- Size Infiltration System for Net increase in Volume for 2-year storm
- Mitigate Peak Rate for larger storms
- Compare to Typical Detention Basin Paradigm

<table>
<thead>
<tr>
<th>Condition</th>
<th>Area (ac)</th>
<th>Weighted CN</th>
<th>S (in)</th>
<th>I (in)</th>
<th>Runoff Q (in)</th>
<th>Runoff Volume (cf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXISTING</td>
<td>3.00</td>
<td>58.0</td>
<td>7.24</td>
<td>1.45</td>
<td>0.31</td>
<td>3,341</td>
</tr>
<tr>
<td>Post-Development Pervious</td>
<td>1.50</td>
<td>60.0</td>
<td>6.67</td>
<td>1.33</td>
<td>0.37</td>
<td>2,015</td>
</tr>
<tr>
<td>Impervious</td>
<td>1.50</td>
<td>98</td>
<td>0.20</td>
<td>0.04</td>
<td>2.87</td>
<td>15,616</td>
</tr>
<tr>
<td>TOTAL POST-DEV</td>
<td>3.00</td>
<td>79.0</td>
<td>---</td>
<td>1.62</td>
<td></td>
<td>17,631</td>
</tr>
</tbody>
</table>

NET CHANGE IN RUNOFF VOLUME (CF): 14,290

Stormwater Management Techniques

• Innovative Design
 – 0.4 ac (17,500 SF) Porous Asphalt w/ Infiltration Beds (2 foot storage depth)
 – Storage Volume = 14,000 CF (0.32 ac-ft)
 – Steady-state Infiltration Rate = 2 inches/hour
 • Modeled in HEC-HMS as a Diversion
 • Infiltration Rate included in Stage-Storage-Discharge Table

• Conventional Design
 – Detention Basin instead of undisturbed meadow (2 foot storage depth)
 – Storage Volume = 20,000 CF (0.46 ac-ft)

Hydrologic Calculations

• USDA-NRCS Cover-Complex Method (TR-55)

2-yr Storm Hydrographs (3.1”/24 hr)

- Post-Dev. Inflow
- Infiltration Bed Discharge
- Pre-Development Runoff
- Detention Basin Discharge

2-yr Storm Peak Rates

- Infiltration Bed Discharge
- Pre-Development Runoff
- Detention Basin Discharge

10-yr Storm Hydrographs (4.9”/24 hr)
Summary Results – Peak Rates

<table>
<thead>
<tr>
<th>Storm Frequency (year)</th>
<th>Existing Runoff Rate (cfs)</th>
<th>Unmitigated Post-Dev. Runoff Rate (cfs)</th>
<th>Infiltration Bed Discharge (cfs)</th>
<th>Detention Basin Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.43</td>
<td>4.58</td>
<td>0.43</td>
<td>0.42</td>
</tr>
<tr>
<td>10</td>
<td>2.59</td>
<td>9.89</td>
<td>2.59</td>
<td>2.59</td>
</tr>
<tr>
<td>25</td>
<td>3.52</td>
<td>11.75</td>
<td>3.40</td>
<td>3.48</td>
</tr>
<tr>
<td>100</td>
<td>5.93</td>
<td>16.14</td>
<td>5.45</td>
<td>5.53</td>
</tr>
</tbody>
</table>

Summary Results – Infiltration

<table>
<thead>
<tr>
<th>Storm Frequency (year)</th>
<th>Existing Runoff Depth (in)</th>
<th>Unmitigated Post-Dev. Runoff Depth (in)</th>
<th>Total Infiltration Depth (in)</th>
<th>Infiltration Bed Discharge (in)</th>
<th>Percentage of Existing Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.30</td>
<td>1.26</td>
<td>1.01</td>
<td>0.25</td>
<td>83%</td>
</tr>
<tr>
<td>10</td>
<td>1.11</td>
<td>2.71</td>
<td>1.68</td>
<td>1.03</td>
<td>93%</td>
</tr>
<tr>
<td>25</td>
<td>1.44</td>
<td>3.23</td>
<td>1.87</td>
<td>1.36</td>
<td>94%</td>
</tr>
<tr>
<td>100</td>
<td>2.33</td>
<td>4.48</td>
<td>2.30</td>
<td>2.18</td>
<td>94%</td>
</tr>
</tbody>
</table>

Detention

<table>
<thead>
<tr>
<th>Storm Frequency (year)</th>
<th>Existing Runoff Depth (in)</th>
<th>Post-Dev. Runoff Depth (in)</th>
<th>Percentage of Existing Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.30</td>
<td>1.26</td>
<td>420%</td>
</tr>
<tr>
<td>10</td>
<td>1.11</td>
<td>2.71</td>
<td>244%</td>
</tr>
<tr>
<td>25</td>
<td>1.44</td>
<td>3.23</td>
<td>224%</td>
</tr>
<tr>
<td>100</td>
<td>2.33</td>
<td>4.48</td>
<td>192%</td>
</tr>
</tbody>
</table>

Stormwater Management for The Village at Springbrook Farms

- Site marked by closed depressions and some sinkholes
- Proposed plan consists of:
 - Revised layout with setbacks from depressions and sinkholes
 - Distributed infiltration system, heavily vegetated
Example Drainage Area

- **Existing (CN = 70.6):**
 - 24 acres of Row Crops
 - **Because of Closed Depressions, only 7.5 acres discharge offsite!!!**
- **Proposed (CN = 81.3):**
 - 24 acres of townhouse development
 - To avoid collecting stormwater in existing Closed Depressions, **all 24 acres discharge offsite!!!**

Summary Results – Infiltration

<table>
<thead>
<tr>
<th>Storm Frequency (year)</th>
<th>Existing Runoff Depth (in)</th>
<th>Unmitigated Post-Dev. Runoff Depth (in)</th>
<th>Total Infiltration (in)</th>
<th>Infiltration Bed Discharge (in)</th>
<th>Percentage of Existing Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.24</td>
<td>1.33</td>
<td>1.27</td>
<td>0.06</td>
<td>27%</td>
</tr>
<tr>
<td>10</td>
<td>0.62</td>
<td>2.84</td>
<td>1.78</td>
<td>1.06</td>
<td>170%</td>
</tr>
<tr>
<td>25</td>
<td>0.74</td>
<td>3.28</td>
<td>1.91</td>
<td>1.37</td>
<td>185%</td>
</tr>
<tr>
<td>100</td>
<td>1.10</td>
<td>4.56</td>
<td>2.99</td>
<td>2.59</td>
<td>236%</td>
</tr>
</tbody>
</table>

Detention

<table>
<thead>
<tr>
<th>Storm Frequency (year)</th>
<th>Existing Runoff Depth (in)</th>
<th>Post-Dev. Runoff Depth (in)</th>
<th>Percentage of Existing Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.24</td>
<td>1.33</td>
<td>561%</td>
</tr>
<tr>
<td>10</td>
<td>0.62</td>
<td>2.84</td>
<td>458%</td>
</tr>
<tr>
<td>25</td>
<td>0.74</td>
<td>3.28</td>
<td>443%</td>
</tr>
<tr>
<td>100</td>
<td>1.10</td>
<td>4.56</td>
<td>415%</td>
</tr>
</tbody>
</table>
TR-55 To Estimate Peak Rate Reduction Based on Storage Volume

TR-55 results
Summary Results – Peak Rates

<table>
<thead>
<tr>
<th>Storm Frequency (year)</th>
<th>Existing Runoff Rate (cfs)</th>
<th>Unmitigated Post-Dev. Runoff Rate (cfs)</th>
<th>Estimated Infiltration Bed Discharge (cfs)</th>
<th>Typical Detention Basin Discharge (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>42.7</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>56.5</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>65.2</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td>100</td>
<td>27</td>
<td>90.1</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

How we Manage Stormwater on a Site-by-Site Basis affects the entire Watershed

Designing Infiltration Systems
Site Criteria

- Soil Permeability greater than 0.25 in./hr
- Minimum Bedrock Separation of 2 feet
- Infiltration device at least 3 feet above seasonally high water table

Design Criteria

- Spread It Out!
- 5:1 Impervious to Recharge Area
- Minimize excavation / maximize soil buffer
- Pre-treatment for “hot-spots”
- Construction oversight!!
- Level Bed Bottoms
- Keep it Clean – E&S Control
Construction Criteria

- Protect infiltration BMPs from sediment until drainage area is completely stabilized
- Do not compact soil under infiltration areas
- Protect infiltration BMPs from sediment
- Do not compact soil
Design of Open-Graded (Porous) HMA

What we don’t want
- Draindown
- Raveling
- Low Permeability

Key mix properties
- Voids - permeability
- Asphalt content - durability
- Draindown - performance
- Moisture susceptibility - performance
Porous Pavement Gradations

Voids

- Starts with gradation – but may not be enough

Step 1. Select design gradation

- Do three blends of aggregate near the coarse, fine and middle of the gradation band.
- Determine VCA_{DRC} of each blend
- Prepare 3 batches of mix from each blend at 6.0 – 6.5% asphalt content.
- Compact 2 specimens each blend
- Test remaining sample each blend G_{mm}
Step 1. Select design gradation

- Determine the density of the mix
 - Dimension
 - CoreLock – note may be lower than by dimension
- Calculate the VCA\textsubscript{MIX}
- Select gradation where VCA\textsubscript{MIX} < VCA\textsubscript{ORC} with high air voids.

Step 2: Select Optimum Asphalt Content

- Prepare samples at 3 binder contents, 0.5% increments (5.5, 6.0, 6.5)
- Draindown test at 15°C higher than anticipated production temperature
- Compact mix and determine air voids
- Run Cantabro abrasion test

Step 2: Select Optimum Asphalt Content

- Select binder content
 - Air Voids ≥ 18%
 - Cantabro Abrasion Test (unaged) ≤ 20%
 - Cantabro Abrasion Test (aged) ≤ 30%
 - Draindown ≤ 0.3%
Step 4: Evaluate Mix for Moisture Susceptibility

- Use Modified Lottman test
 - Compact using 50 gyrations
 - Vacuum saturate for 10 minutes
 - Use 5 freeze thaw cycles
 - Keep specimens submerged in water during freezing
- TSR ≥ 80%

DOT OGFC Specs

- Open-Graded Friction Course (OGFC)
 - Don’t confuse with Asphalt Treated Permeable Bases (ATPB)
 - Not suitable for surfaces
 - Common practice some states
 - Probably best way to specify mix
 - Contractors are familiar with it.
 - Need to check for key properties are spec’d

Key Properties to Look for in DOT OGFC Specifications

- Air Voids – key to permeability
 - Recommend ≥ 18%
- Draindown – performance & permeability
 - Draindown ≤ 0.3%
- Asphalt Content – for durability
 - Recommend 6.0% minimum
 - Absolute minimum 5.5%
- Max Agg Size – 100% passing 19 mm
Construction of Porous Pavements

Planning

- Plan to build late in construction process
- Wait till "dirty work is done"
- Wait till vegetation is established
- Or keep runoff controls in place until established
- Can excavate bed to about 1' above planned elevation and use for SW control
- Excavate to plan elevation when ready
Bed Excavation

- Excavate bed to plan elevation using equipment w/ "soft footprint"
- Don’t compact subgrade

Berms

- Do not excavate earth berms between beds (if used)
- Should not need compaction

Non-woven Geotextile

- Spread geotextile immediately after fine grading
- Overlap fabric >16”
- Install drainage pipes if used
- Excess fabric (>4’) folded over agg. later
Stone Recharge Bed
- Place clean, single-size, washed aggregate.
- Do not drive trucks on fabric.
- Spread and grade with tracked equipment 8" lifts.
- Light compaction - static.
- Protect pipes.

Choker Course
- Place “Choker” course - ½” clean washed aggregate.
- Purpose to lock up surface for stable paving platform.
- 1 – 2” thick.
- Grade and compact:
 - Static.
 - Vibratory? – (maybe low amplitude, high frequency).

Mix Production
- Watch temperature:
 - Don’t produce higher than tested by draindown.
 - Don’t store for extended periods in silos.
 - Batch plant lower production due to screens.
- Fibers reduce draindown:
 - Requires special equipment.
 - Batch plant increase dry and wet mixing time.
 - Equipment must be calibrated.
Paving
- First fold fabric over agg.
- Paving as usual?
 - Recommend track paver
- Avoid truck movement over agg.
 - Stability may be issue
 - Avoid disturbing agg. surface – but it will happen
- Production will be less
- Limit handwork with polymers

Hauling
- With polymers heavy and thorough coating of release agent.
- Raise bed after spraying to drain puddles
- Tarping a must
- Limit haul distance

Compaction
- Static compaction
- 1 to 2 passes 10 ton steel wheel roller
- Less stable than thin OGFC
 - May have to let cool some
After Compaction

- Limit traffic for 24 hours to allow to set-up
- Keep sediment control in place till vegetation established
What about building roadways with porous pavement?

Arizona Highway Dept.
1986

Route 87, Chandler, AZ

- Two lanes of a 4 lane roadway, 3,500 ft.
- Traffic volume – 45,000 ADT
- 2-6” pavements over 8” stone base
- edge drain discharges to shoulder
Typical Section of AZ DOT’s Experimental Porous Pavement
The End
Porous Asphalt in Colorado

Lisa Klotz
Golden, Colorado

History of Porous Asphalt

- Originally developed in the 1970’s
- Franklin Institute in Philadelphia, PA
- Tested throughout the 1980’s
- Oldest systems – 1980-81 on east coast
- Why not in Colorado???

Major Concerns of Porous Asphalt Installment in Colorado

- Climate – Freeze/Thaw Impacts
- Expansive Soils
- Cost Effectiveness
Freeze / Thaw Impacts

Winter Weather and Pavement
- Many freeze/thaw cycles
- Expansion and shrinking of moisture/ice
- Breakdown of pavements
 - Thermal cracking
 - Potholes
 - Heaving/ Settlement

Thermal Cracking
How does porous asphalt endure freeze/thaw??

- Porous asphalt allows water to pass through
- Water does not stay on the surface long enough to freeze
- Increased void space does not "trap" water on the pavement
- Less need for snow removal due to heat from the "reservoir" layer
Cross-Section of Porous Asphalt with Recharge Bed

- Open-Graded HMA ~ 2 ½"
- ½” Agg. (#57) ~ 1 – 2” Thick
- Clean Uniformly Graded 2”-3” Crushed Agg. (#2) – 40% Voids
- Non-Woven Geotextile
- Uncompacted Subgrade

Cold Climate Success Stories

- Walden Pond
- Lulea, Sweden (within 1° of arctic circle)
- Wal-Mart “Green” – Aurora, CO

What about the expansive soils in Colorado?
Expansive Soils

- Colorado = expansive soils
- Denver swell test
- Capable of causing serious damage to pavements
- Typical mitigation is excavation and replacement of sub-base
Structural and Hydrological Concerns

• Structural
 – 12-36" of aggregate base
 – Sealed with a 2-4" choker course
 – Supports structure of pavement

• Hydrological
 – Soil permeability
 – Piping water away from clay subgrades
 – Lower impact on storm water management

Isn’t porous asphalt more expensive??
Savings, Savings, Savings!!

- No proprietary ingredients in the asphalt mix
- No special paving equipment
- Increased costs of stone beds are offset by savings in other storm management costs

Storm Water Management Benefits

- Reduced need for other BMP’s
- Elimination of detention basin
- Reduction in runoff, reduces impact on storm water system
- Convey runoff from other impermeable areas on the site (roofs, etc)
- Contaminants collected on the pavement are naturally filtered through the soil

Maintenance Considerations

- Keeping the sediment out
- No sand, ash or salt for ice
- Vacuum sweeping/ High pressure hosing
- Spot-Clogging
- Annual Inspections
Open Graded Friction Course (OGFC)

- Increased skid resistance
- Noise reduction
- Increased safety

Noise Reduction

- Bar chart comparing noise reduction of PCCP, Dense Graded, and OGFC

Colorado DOT Tire/Pavement Noise Study, NCAT, April 2004

Rock Concert

- 100-110 dB
- Same average level as PCCP
Rockin’ Out In Your Vehicle

- 85 – 95 dB (Depending on your system)
 - Comparable to OGFC

Safety

- Reduction of glare
 - Ice and snow
 - Skid resistance
 - Reduction of hydroplaning

Pavement of the Future for Colorado??

- Cost effective
- Beneficial to storm water management
- Compatible with Colorado sub-surface conditions
- Increased safety
- Simple technology
- Proven to last more than 20 years
For more info…

- *Porous Asphalt Pavements*, published by the National Asphalt Pavement Association, Information Series 131
- www.hotmix.org
- www.thecahill.com
- Stormwater magazine, “*Porous Asphalt Pavement with Recharge Beds*”, Michele C. Adams

Thanks!!

Questions??