Pavement Design Webinar

JUNE 23, 2016
COLORADO ASPHALT PAVEMENT ASSOCIATION

Who is CAPA?

We are a resource for **YOU**
AASHO Road Test

Constructed 1956-1958 for $27M
AASHO Road Test

Loop 1: No traffic, used to study environmental effects
Structural Section Basics

- Asphalt
- Subgrade
- Base Coarse
- 18 kip

Tensile Strain at the bottom of first layer

- Compressive Strain at the top of the subgrade

AASHO Road Test

Empirical Pavement Design

\[
\log_{10}(V) = Z \times S_o + 9.36 \times \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}(\frac{\Delta PST}{4.5 - 1.5})}{1094} + 2.32 \times \log_{10}(M_o) - 8.07
\]

Axle Load Structural Number Pavement Performance Subgrade Strength
Guidelines and Standards

Multiple procedures in the design world
- AASHTO
- FHWA
- CDOT
- MGPEC

Individual agencies will use one or more of these for project design

Used to determine pavement thickness

Options for different pavement types

MGPEC Design Standards for Metro Denver Area

Defined Truck Factors or Load Equivalency Factors [LEFs] for vehicle types.

Default ESAL calculation for basic residential, commercial, industrials roads. More refined methods are allowed.

Less costly soil support strength correlation to resilient modulus \([Mr]\) is provided. Direct measurement allowed.

Swelling soils effect is mitigated with moisture treatment above normal optimum moisture contents to various depths. Proper pavement support is then achieved by stabilizing the upper layer with chemical (lime, cement, flyash) treatment techniques. Current efforts in developing methods to use geo-synthetics (grids or high strength fabrics).

Asphalt thickness design uses modified AASHTO equation that adds fatigue component adjustment.

Concrete thickness design is not modified from AASHTO.

Some inputs to AASHTO equation are set in the standard: reliability \([R,Z_r]\) serviceability limits \([P_o, P_t]\), asphalt ‘strength’ \([a_1]\) or concrete properties.

MGPEC software gives a MGPEC compliant design. Also has LCCA output.
Soil Basics 101

Sands (granular)
Silts
Clays (cohesive)

Atterberg Limits (PI, LL)
% passing -200 screen
Molded Sample

Uncompacted
Molded Sample

Compacted

Molded Sample

Compacted and Saturated
Proctor Curve

Strength of Subgrade

California Bearing Ratio (CBR)
Hveem Stabilometer (R-Value)
Unconfined Compression (Q_u)
Resilient Modulus (M_R)
Data

Subgrade Investigation
 Timing
 Spacing of Borings
 Depth of Borings
 Sampling

Data

Field Investigation
 – Preliminary & Final Design Reports
 • Boring Spacing: 250 ft
 • Depth: 4 to 9 ft

 – Design Confirmation Report
 • Boring Spacing: 500 ft
Data

Laboratory Testing
- Subgrade Support Testing
 - (R-Value, CRB, Unconfined)
- Swell Testing
 - (Drive vs Remolded Samples)
Number of Tests Required

Data

Laboratory Testing
- Soil Classification (each boring)
 - Gradation, atterberg limits, sulfates
- Swell Testing
 - 200psf
- Strength Testing
 - Sands: R-Value, Modified Proctor
 - Clays: Unconfined, Standard Proctor
 Remolded to 95%, +2% OMC
Data

Design Traffic
Street Classification
What types of vehicles?
Equivalent Daily Load Application (EDLA)
Equivalent Single Axle Load (ESAL)
Private?

Life Cycle Cost Analysis

Purpose

LCCA is a process for evaluating the total economic worth of a project by analyzing initial construction costs, discounted future costs, maintenance, user costs and salvage value of the life of the pavement.
Life Cycle Cost Analysis

When evaluating competing project designs, engineers are often confronted with the option of using alternative materials with wide ranges of design or useful life!

Agency costs
- Preliminary engineering
- Contract administration
- Initial construction
- Construction supervision
- Maintenance
- Rehabilitation
- Administrative
- Salvage value
Life Cycle Cost Analysis

General Procedure

User costs
- Normal operation
- Work zone
- Types of user costs
 - Vehicle operating
 - User delay
 - Crash

General Procedure

Alternative comparison
- Net present value (NPV)
- Equivalent uniform annual costs (EUAC)

\[NPV = \text{initial cost} + \sum_{k=1}^{N} \text{Rehab cost}_k \left[\frac{1}{(1+i)^n} \right] \]

\[EUAC = NPV \left[\frac{(1+i)^n}{(1+i)^n - 1} \right] \]

\[i = \text{discount rate} \]
\[n = \text{year of expenditure} \]
\[\left[\frac{1}{(1+i)^n} \right] = \text{Present value (PV) factor} \]

\[\text{Analysis period (the number of years into the future over which you wish to compare projects)} \]
LCCA General Assumptions

Both pavements built at same time
Same traffic on each pavement
Same user costs between construction activities
 ◦ Implies road roughness is the same
 ◦ Maintenance/rehabilitation activities are scheduled such that user costs are the same
 ◦ Implies some unlikely activities must be scheduled
Differences will be in...
 ◦ Construction costs
 ◦ User delay costs during construction
 ◦ Salvage value

Without Pavement, We Would Be Stuck in the Mud!
Brief Overview

- Why PaveXpress?
- What Is PaveXpress?
- An Introduction
- Overview of the System
- Design Scenarios Using PaveXpress

Resources
AASHTO has been developing MEPDG for high volume roads, but a gap has developed for local roads and lower volume roads.

What Is PaveXpress?

A free, online tool to help you create simplified pavement designs using key engineering inputs, based on the AASHTO 1993 and 1998 supplement pavement design process.

- Accessible via the web and mobile devices
- Free — no cost to use
- Based on AASHTO pavement design equations
- User-friendly
- Share, save, and print project designs
- Interactive help and resource links
The equation was derived from empirical information obtained at the AASHO Road Test. The solution represents the average amount of traffic that can be sustained by a roadway before deteriorating to some terminal level of serviceability, according to the supplied inputs.

1993 AASHTO Design Guide Equation — Basic Overview

\[
\log_{10}(W_{18}) = Z_R \times S_0 + 9.36 \times \log_{10}(SN + 1) - 0.20 + \frac{\log_{10} \left(\frac{\Delta PSI}{4.2 - 1.5} \right)}{0.4 + \frac{\log_{10} \left(\frac{10^{94}}{(SN + 1)^{1.19}} \right)}{10^{94}}} + 2.32 \times \log_{10}(M_R) - 8.07
\]

Where:
- \(W_{18} \) = the predicted number of 18-kip equivalent single axle load (ESAL) applications
- \(Z_R \) = standard normal deviate
- \(S_0 \) = combined standard error of the traffic prediction and performance prediction
- \(\Delta PSI \) = difference between the initial design serviceability index (\(p_i \)) and the design terminal serviceability index (\(p_t \))
- \(M_R \) = resilient modulus of the subgrade (psi)
1993 AASHTO Design Guide Equation — Basic Overview

The designer inputs data for all of the variables except for the structural number (SN), which is indicative of the total pavement thickness required.

Once the total pavement SN is calculated, the thickness of each layer within the pavement structure is calculated

\[SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3 \ldots + a_iD_im_i \]

Where:
- \(a_i \) = \(i^{th} \) layer coefficient
- \(D_i \) = \(i^{th} \) layer thickness (inches)
- \(m_i \) = \(i^{th} \) layer drainage coefficient

Design Thickness

Layer Coefficients
- Hot Mix Asphalt 0.40 to 0.44
- Granular Base Course 0.12 to 0.14
- Chemically Treated Subgrade
 - Lime, Cement, Fly Ash 0.11 to 0.14
 - Cement Treated Base Course 0.20 to 0.22
 - Bitum. Treated Base Course 0.20 to 0.22
Design Thickness

Drainage Coefficients

- Range from 0.7 - 0.8 for very poor subgrade to 1.1 - 1.15 for excellent subgrades
- Generally Accepted by Geotechnical/Pavement Engineers in Colorado to use a drainage coefficient of 1.0 for unbound base and subbase layers

General Guidance

- The solution represents the pavement thickness for which the mean value of traffic which can be carried given the specific inputs. That means there is a 50% chance that the terminal serviceability level could be reached in less time than the period for which the pavement was designed.
- As engineers, we tend to want to be conservative in our work. Understand that as we use values that are more and more conservative, the pavement thickness increases and the overall cost also increases.
General Guidance

• A reliability factor is included to decrease the risk of premature deterioration below acceptable levels of serviceability.

• In order to properly apply the reliability factor, the inputs to the design equation should be the mean value, without any adjustment designed to make the input “conservative.”

• The pavement structure most likely to live to its design life will be the one with the most accurate design inputs. Whenever possible, perform materials testing and use actual traffic counts rather than relying on default values or guessing (too much!) regarding anticipated traffic levels.

Roadway Classifications

Interstate: All routes that comprise the Dwight D. Eisenhower National System of Interstate and Defense Highways belong to the “Interstate” functional classification category and are considered Principal Arterials.

Arterials/Highways: The roads in this classification have directional travel lanes are usually separated by some type of physical barrier, and their access and egress points are limited to on- and off-ramp locations or a very limited number of at-grade intersections. These roadways serve major centers of metropolitan areas, provide a high degree of mobility. They can also provide mobility through rural areas. Unlike their access-controlled counterparts, abutting land uses can be served directly.

Local: Local roads are not intended for use in long distance travel, due to their provision of direct access to abutting land. Bus routes generally do not run on Local Roads. They are often designed to discourage through traffic. Collectors serve a critical role in the roadway network by gathering traffic from Local Roads and funneling them to the Arterial network.

Residential/Collector: The roads in this classification have the lowest traffic loadings and are basically comprised of automobiles and periodic truck service traffic, such as garbage trucks, etc. The “Collector” name appended to this classification fits more with the “Local” classification above, i.e., “Collector/Local.”
Reliability Level (R) = The probability that the pavement will survive the design period with a pavement serviceability level greater than the terminal serviceability level.

Reliability Level (R) = $Z_R = \frac{(-\log F_R)}{S_0}$

Variance = S_0^2

Note that Z_R increases as R decreases, changing from negative to positive when $R < 50$

AASHTO Suggested Reliability Levels For Various Functional Classifications

Reliability Level (R): 50% to 95%, depending on Roadway Classification

The probability that a pavement section designed using the process will perform satisfactorily over the traffic and environmental conditions for the design period. This is then used to look up Z_R, the standard normal deviate which is the standard normal table value corresponding to a desired probability of exceedance level. Suggested levels of reliability for various Functional Classifications (1993 AASHTO Guide, Table 2.2, page II-9):

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Recommended Level of Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Rural</td>
</tr>
<tr>
<td>Interstate and Other Freeways</td>
<td>85–99.9</td>
</tr>
<tr>
<td>Principal Arterials</td>
<td>80–99</td>
</tr>
<tr>
<td>Collectors</td>
<td>80–95</td>
</tr>
<tr>
<td>Local</td>
<td>50–80</td>
</tr>
</tbody>
</table>
Present Serviceability Index Concept

- PaveXpress default initial serviceability (p_i)
- PaveXpress default range for terminal serviceability (p_t)

Roadway Classification Effect On PaveXpress Default Values

<table>
<thead>
<tr>
<th></th>
<th>Interstate</th>
<th>Arterials/Highway</th>
<th>Local</th>
<th>Residential/Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Period</td>
<td>40 years</td>
<td>30 years</td>
<td>20 years</td>
<td>20 years</td>
</tr>
<tr>
<td>Reliability Level</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Combined Standard Error (S_o)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Initial Serviceability Index (p_i)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>Terminal Serviceability Index (p_t)</td>
<td>3.0</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Change in Serviceability (ΔPSI)</td>
<td>1.5</td>
<td>1.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Subgrade Considerations

The most common methods of classifying the subgrade for pavement design are:

- California Bearing Ratio (CBR)
- Resistance Value (R)
- Resilient Modulus (M_R)

California Bearing Ratio (CBR)

The CBR Test can be performed either in the lab (AASHTO T 193, ASTM D 1883) or in the field in situ (ASTM D4429).

The CBR is a simple test that compares the bearing capacity of a material with a standard well-graded crushed stone, which has a reference CBR value of 100%.

Fine-grained soils typically have values less than 20.
Using the Dynamic Cone Penetrometer to Estimate CBR

The Dynamic Cone Penetrometer (DCP) Test can be performed in the field in situ (ASTM D6951) and used to estimate CBR values.

The U.S. Army Engineers Waterways Experiment Station has developed the following relationship between Dynamic Penetration Index (DPI) and CBR:

\[\log_{10}(CBR) = 2.46 - 1.12 \log_{10}(DPI) \]

Resistance Value (R)

The Resistance Test is performed in the lab (AASHTO T 190, ASTM D 2844).

It tests both treated and untreated laboratory compacted soils or aggregates with a stabilometer and expansion pressure devices. It tests the ability of the material to resist lateral spreading due to an applied vertical load.

A range of values are established from 0 to 100, where 0 is the resistance of water and 100 is the resistance of steel.
Resilient Modulus (M_R)

The Resilient Modulus Test is performed in the lab (AASHTO T 307, ASTM D 2844).

It is a measure of the soil stiffness and tri-axially tests both treated and untreated laboratory compacted soils or aggregates under conditions that simulate the physical conditions and stress states of materials beneath flexible pavements subjected to moving wheel loads.

As a mechanistic test measuring fundamental material properties, it is often thought preferable to the empirical CBR and R-value tests.

PaveXpress uses some common empirical expressions used to estimate M_R from CBR and R-values:

\[
M_R = 2555 \times CBR^{0.64}
\]

\[
M_R = 1000 + (555 \times R)
\]

Although these equations may help the designer evaluate materials, it is usually best to determine M_R directly through testing, if possible, rather than from the use of correlation equations.
Subgrade Considerations

The Asphalt Institute publication IS-91 gives the following test values for various subgrade qualities:

<table>
<thead>
<tr>
<th>Relative Quality</th>
<th>R-Value</th>
<th>California Bearing Ratio</th>
<th>Resilient Modulus (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good to Excellent</td>
<td>43</td>
<td>17</td>
<td>25,000</td>
</tr>
<tr>
<td>Medium</td>
<td>20</td>
<td>8</td>
<td>12,000</td>
</tr>
<tr>
<td>Poor</td>
<td>6</td>
<td>3</td>
<td>4,500</td>
</tr>
</tbody>
</table>

Note that different design guides will show different ranges for the various subgrade qualities — use engineering judgment when evaluating subgrade design inputs.

Where Can I Find Traffic Data?

• Many DOTs post their traffic count data online
• Contact the Traffic Division of the DOT
• Contact the Traffic Division of the city, if available
• If no official traffic count is available, conduct a short-term count
• Interview local people and businesses

The bottom line is, try to document in some way why you selected the number for input into the design software.
Vehicle Load Factors

1 18,000 lb axle (truck) = 1929 cars
1 bus = 2642 cars

Design Traffic

Ranges in ESALs based on street classification

- Arterial - 1,460,000 to 1,825,000
- Major Collector – 730,000 to 1,095,000
- Minor Collector – 219,000 to 365,000
- Local – 58,400 to 73,000
- Cul-de-sac – 36,500 to 58,400
Design Traffic

Ranges in ESALs for parking lots
- Automobile stalls – 21,900 to 36,500
- Secondary drives – 36,500 to 58,400
- Primary drives – 58,400 to 73,000
- Loading docks – 73,000 to 182,500*

*Anticipated site specific traffic should be evaluated

Pavement Section Alternatives

Full-Depth
- Placed directly on prepared subgrade
- Thickness generally ranges from 5 to 10 inches
- Addition of base layer to be considered if over 10 inches is needed
Pavement Section Alternatives

Flexible Composite
- Asphalt over aggregate base course on prepared subgrade
- Separation geotextile should be considered on cohesive soils
- Edge drains should be considered on cohesive soils

Pavement Section Alternatives

Flexible Composite
- Base thickness generally ranges from 6 to 12 inches
- General guidance for ratio of aggregate base thickness to hot mix asphalt thickness
 - 2:1 to 2.5:1
Pavement Section Alternatives

Chemically Treated
- Asphalt over chemically treated with lime, cement or fly ash
- Treated layer part of structural section
 - Requires adequate improved strength (typical min. 160 psi)
- Range in thickness – 8 to 12 inches

Mechanically Treated
- Asphalt over reinforced granular base
- Reinforcement – multi-axial geogrid placed on stable prepared subgrade
- Provides for reduction in aggregate base thickness
- Starting to be recognized, yet to be officially accepted by most agencies